Материал из Кружковое движение
Перейти к навигации
Перейти к поиску
Математический анализ
Математический анализНазвание курса |
Источник / Организация |
Возраст |
Длина курса
|
---|
Введение в математический анализ (целиком)
|
Последовательности
- Последовательности: супремум и инфимум
- Предел последовательности
- Число e
- Сходимость рядов
Функции и непрерывность
- Предел функции, свойства
- Непрерывность функции, теорема Вейерштрасса
- Теорема Больцано–Коши
- Замечательные пределы
- Эквивалентные функции
производные
- Дифференцируемость и производная
- Теоремы о среднем
- Производная и монотонность
- Правило Лопиталя
- Формула Тейлора
- Экстремумы функций
Интегралы
- Первообразная и неопределенный интеграл
- Площади и определенный интеграл
- Теорема Барроу и формула Ньютона-Лейбница
- Интегральные суммы, связь между суммами и интегралами
|
|
Stepik / CSC
|
Старшая школа и студенты
|
8 часов видео, 100 тестов
|
Математический анализ (часть 1)
|
Последовательности
- Последовательности: супремум и инфимум
- Предел последовательности
- Число e
- Теорема Больцано-Вейерштрасса
- Верхний и нижний пределы, сходимость
Функции и непрерывность
- Предел функции, свойства
- Непрерывность функции, теорема Вейерштрасса
- Теорема Больцано–Коши
- Элементарные функции
- Замечательные пределы
- Эквивалентные функции
|
|
Stepik / CSC
|
Старшая школа и студенты
|
5 часов видео, 100 тестов
|
Математический анализ (часть 2)
|
производные
- Дифференцируемость и производная
- Теоремы о среднем
- Производная и монотонность
- Правило Лопиталя
- Формула Тейлора
- Экстремумы функций
- Выпуклые функции
- Классические неравенства
Интегралы
- Первообразная и неопределенный интеграл
- Неопределенный и определенный интегралы
- Теорема Барроу и формула Ньютона-Лейбница
- Приложение формулы интегрирования по частям
- Равномерная непрерывность
- Интегральные суммы
|
|
Stepik / CSC
|
Старшая школа и студенты
|
6 часов видео, 100 тестов
|
Теория игр
Теория игрНазвание курса |
Источник / Организация |
Возраст |
Длина курса
|
---|
Теория игр
|
- Стратегические взаимодействия
- Доминирующие и доминируемые стратегии
- Равновесие Нэша
- Модель Хотеллинга — Даунса и модель Курно
- Игры в развернутой форме
- Равновесие Нэша, совершенное на подыграх
- Игры с несовершенной информацией
- Смешанные стратегии
- Задача о стабильных мэтчингах
- Коалиционные игры
- Краткая история теории игр
|
|
Coursera / ВШЭ
|
Старшая школа и студенты
|
10 часов видео
|
Теория игр
|
- Равновесия Нэша
- Смешанные равновесия
- Динамическая теория игр
- Случайность и неполная информация
- Секвенциальные равновесия и равновесия Байеса-Нэша
- Кооперативная теория игр. Ядро. Вектор Шепли
- Классические модели Курно и Бертрана. Монополистическая конкуренция
|
|
Coursera / МФТИ
|
Старшая школа и студенты
|
12 часов видео
|